Study of an Asymmetric Structure of (G/C) and (A/T)Molecules as a Rectifier at NanoScale
DOI:
https://doi.org/10.47957/ijciar.v6i2.154Keywords:
Nanoscale diode, molecular rectifier, tight-binding model, conductance, currentAbstract
In this study, Nano-diode is proposed using an asymmetric structure of two different molecules attached to metal electrodes. The asymmetric molecular structure acts as a molecular diode (MD) in uniformity circuits at the Nano scale. A tight-binding model is adopted to describe MD, and the results are based on the steady-state formula to illustrate charge transfer. Theoretical calculations of the conductivity and current as a function of time, the study of the effect of heat on it, as well as the study of the rectification current ratio as a function of bias voltage, all these calculations were made using two types of molecules of DNA, they are (G/C) and (A/T). The results were encouraging because they gave the common features of the rectification. The analysis may be useful in the fabrication of electronic devices with Nanotechnology.
Downloads
References
Ayoub Oukhate , Mohamed Bakhouya and Driss EL ouadghiri , Electromagnetic –Based Wireless Nano-Sensors Network: Architectures and Applications , Journal of communications, Vol 6 .No1 ,2021 , pp 8-19. DOI: https://doi.org/10.12720/jcm.16.1.8-19
Gang Wang , Nanotechnology : The New Feature , 8Dec ,2018, arxiv:;1812 . 04939v1[cs. ET]
Shapira,Philip and Jan Youtie, Introduction to the Symposium issue: Nano technology innovation and Policy current Strategies and Future Trajectories , the Journal of technology transfer 36.6 ,2011,pp581-586 DOI: https://doi.org/10.1007/s10961-011-9224-9
Wenyong Su"First principles study of Molecular Electronic Devices "Royal institute of technology ,stock holm, Sweden,2006 ,ISBN91-7178-990-7
James R . Health " Molecular Electronics" Annu, Rev ,mater . Res,2009,39:pp1-23 DOI: https://doi.org/10.1146/annurev-matsci-082908-145401
S.-H. Ke, H. U. Baranger and W. Yang, Phys. Rev. B 70, 085410 (2004).
M. C. Petty and M. Bryce An Introduction to Molecular Electronics, (Oxford University Press, New York, 1995).
J. M. Tour Molecular Electronics , (World Scientific, singapore, 2003). DOI: https://doi.org/10.1142/5194
X.-Y. Xiao, B.-Q. Xu and N.-J. Tao, Nano lett. 4, 267 (2004). DOI: https://doi.org/10.1021/nl035000m
M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin and J. M. Tour, Science 278, 252 (1997). DOI: https://doi.org/10.1126/science.278.5336.252
W. J. Liang, M. Shore, M. Bockrath, J. R. Long and H. Park, Nature 417, 725 (2002). DOI: https://doi.org/10.1038/nature00790
J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M. Mayor and H. v. Lohneysen, Phys. Rev. Lett. 88, 176804 (2002). DOI: https://doi.org/10.1103/PhysRevLett.88.176804
X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris and S. M. Lindsay, Science 294, 571 (2001). DOI: https://doi.org/10.1126/science.1064354
J. G. Kushmerick, D. B. Holt, S. K. Pollack, M. A. Ratner, J. C. Yang, T. L. Schull, J. Naciri, M. H. Moore and R. Shashidhar,J. Am. Chem. Soc. 124, 10654 (2002). DOI: https://doi.org/10.1021/ja027090n
R. H. M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. van Hemert and J. M. van Ruitenbeek, Nature 419, 906 (2002). DOI: https://doi.org/10.1038/nature01103
D. J. Wold and C. D. Frisbie, J. Am. Chem. Soc. 123, 5549 (2001). DOI: https://doi.org/10.1021/ja0101532
R. L. York, P. T. Nguyen and K. Slowinski, J. Am. Chem. Soc. 121, 7257 (1999). DOI: https://doi.org/10.1021/ja991613i
M. Magoga and C. Joachim, Phys. Rev. B 56, 4722 (1997). DOI: https://doi.org/10.1103/PhysRevB.56.4722
W.-Y. Su, J. Jiang and Y. Luo Chem. Phys. Lett. 412, 406 (2005). DOI: https://doi.org/10.1016/j.cplett.2005.07.021
M. P. Samanta, W. Tian, S. Datta, J. I. Henderson and C. P. Kubiak, Phys. Rev. B 53, R7626 (1996). DOI: https://doi.org/10.1103/PhysRevB.53.R7626
Y. Luo, C.-K. Wang and Y. Fu, J. Chem. Phys. 117, 10283 (2002). DOI: https://doi.org/10.1063/1.1518962
K. Stokbro, J. Taylor, M. Brandbyge, J.-L. Mozos and P. Ordejon, Comput. Mater. Sci. 27, 151 (2003). DOI: https://doi.org/10.1016/S0927-0256(02)00439-1
Shakir A. A. AL-Saidi and Alaa Ayad Khedhair Al-mebir. Asymmetric Double Quantum Dot Structure as Nano scale Diode. University of Thi-Qar Journal Vol. 13 No.4 DEC 2018
Maiti SK. Electron transport through mesoscopic rings: Evidence of nano-scale rectifiers. Solid State Communications. 2010;150(37):1741-5. DOI: https://doi.org/10.1016/j.ssc.2010.07.029
G. Cuniberti, E. Maci, A. Rodriguez, and R.A. Romer ," Tight-binding modeling of charge migration in DNA devices", Cornell I University Library, 2007. DOI: https://doi.org/10.1007/978-3-540-72494-0_1
B. Giese, J. Amaudrut, A. K¨ohler, M. Spormann, and S. Wessely, Nature 412, 318 (2001). DOI: https://doi.org/10.1038/35085542
X.-Q. Li and Y. Yan, Appl. Phys. Lett., 79, 14, 2001. DOI: https://doi.org/10.1063/1.1428116
R. Gutierrez, S. Mandal, and G. Cuniberti, Physical Review B 71, I 235116, 2005. DOI: https://doi.org/10.1103/PhysRevB.71.235116
Published
How to Cite
Issue
Section
Citations

This work is licensed under a Creative Commons Attribution 4.0 International License.