Optimization heart disease prediction using independent component analysis and support vector machine


  • Abbas Khalifa Nawar Department of Computer Techniques Engineering, imam Al-Kadhum College (IKC), Baghdad, Iraq




Confusion matrix, , Heart disease, , ICA, SVM, Feature selection


Prediction models play a crucial role in early detection and intervention for cardiac diseases. However, their effectiveness is often hindered by limitations inherent in current methodologies. This paper proposes a novel approach to address these challenges by integrating Independent Component Analysis (ICA) with the Support Vector Machine (SVM) technique. Utilizing a comprehensive Cleveland dataset, our model achieves notable performance metrics, including an accuracy of 90.16%, an Area Under the Curve (AUC) of 96.66%, precision of 90.02%, recall of 90.00%, F1-score of 90.00%, and a minimal log loss of 3.54. Our methodology not only surpasses previous methodologies through extensive comparative analysis but also addresses common constraints identified in existing literature. These limitations encompass insufficient feature representation, overfitting, and a lack of proactive intervention strategies. By amalgamating ICA with SVM, our model enhances feature extraction, mitigates overfitting, and facilitates proactive diagnosis and intervention in individuals suspected of having heart disease. This study underscores the importance of mitigating current literature limitations and underscores the potential of integrating contemporary machine-learning techniques to advance prediction models for heart disease.


Download data is not yet available.


S. A. Jebur, M. A. Mohammed, and A. K. Abdulhassan, “Covid-19 detection using medical images,” in AIP Conference Proceedings, 2023, vol. 2591, no. 1. doi: https://doi.org/10.1063/5.0119758. DOI: https://doi.org/10.1063/5.0119758

R. Manne and S. C. Kantheti, “Application of Artificial Intelligence in Healthcare: Chances and Challenges,” Current Journal of Applied Science and Technology, vol. 40, no. 6, pp. 78–89, 2021, doi: 10.9734/cjast/2021/v40i631320. DOI: https://doi.org/10.9734/cjast/2021/v40i631320

M. M. Ahsan and Z. Siddique, “Machine Learning-Based Heart Disease Diagnosis: A Systematic Literature Review,” Dec. 2021, [Online]. Available: http://arxiv.org/abs/2112.06459

R. Baxani and M. Edinburgh, “Heart Disease Prediction Using Machine Learning Algorithms Logistic Regression, Support Vector Machine and Random Forest Classification Techniques,” Support Vector Machine and Random Forest Classification Techniques (July 1, 2022), 2022, [Online]. Available: https:/papers.ssrn.com/sol3/papers.cfm?abstract_id=4151423s. Int J Adv Sci Technol. 2020;29(03):12273-12282.

M. O. Adebiyi, A. A. Adebiyi, O. Okesola, and M. O. Arowolo, “ICA Learning Approach for Predicting RNA-Seq Data Using KNN and Decision Tree Classifiers,” International Journal of Advanced Science and Technology, vol. 29, no. 03, pp. 12273–12282, 2020.

S. M.R.Taha and A. K. Nawar, “A New Quantum Radial Wavelet Neural Network Model Applied to Analysis and Classification of EEG Signals,” International Journal of Computer Applications, vol. 85, no. 7, pp. 7–11, 2014, doi: 10.5120/14851-3216. DOI: https://doi.org/10.5120/14851-3216

D. Giri et al., “Automated diagnosis of Coronary Artery Disease affected patients using LDA, PCA, ICA and Discrete Wavelet Transform,” Knowledge-Based Systems, vol. 37, pp. 274–282, 2013, doi: 10.1016/j.knosys.2012.08.011. DOI: https://doi.org/10.1016/j.knosys.2012.08.011

A. I. B. Shimaa Ouf, “A proposed paradigm for intelligent heart disease prediction system using data mining techniques,” Journal of Southwest Jiaotong University, vol. 56, no. 4, 2021. DOI: https://doi.org/10.35741/issn.0258-2724.56.4.19

S. Mohan, C. Thirumalai, and G. Srivastava, “Effective heart disease prediction using hybrid machine learning techniques,” IEEE Access, vol. 7, pp. 81542–81554, 2019, doi: 10.1109/ACCESS.2019.2923707. DOI: https://doi.org/10.1109/ACCESS.2019.2923707

C. B. C. Latha and S. C. Jeeva, “Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques,” Informatics in Medicine Unlocked, vol. 16, p. 100203, Jan. 2019, doi: 10.1016/J.IMU.2019.100203. DOI: https://doi.org/10.1016/j.imu.2019.100203

V. Chang, V. R. Bhavani, A. Q. Xu, and M. A. Hossain, “An artificial intelligence model for heart disease detection using machine learning algorithms,” Healthcare Analytics, vol. 2, p. 100016, 2022. DOI: https://doi.org/10.1016/j.health.2022.100016

A. Al Bataineh and S. Manacek, “MLP-PSO hybrid algorithm for heart disease prediction,” Journal of Personalized Medicine, vol. 12, no. 8, p. 1208, 2022. DOI: https://doi.org/10.3390/jpm12081208

H. C. De Albuquerque, F. Palumbo, P. Barsocchi, A. K. Bhoi, E. Dritsas, and M. Trigka, “Efficient Data-Driven Machine Learning Models for Cardiovascular Diseases Risk Prediction,” Sensors 2023, Vol. 23, Page 1161, vol. 23, no. 3, p. 1161, Jan. 2023, doi: 10.3390/S23031161. DOI: https://doi.org/10.3390/s23031161

“Heart Disease - UCI Machine Learning Repository.” https://archive.ics.uci.edu/dataset/45/heart+disease (accessed Sep. 25, 2023).

X. Qin, Y. Luo, N. Tang, and G. Li, “Making data visualization more efficient and effective: a survey,” The VLDB Journal, vol. 29, no. 1, pp. 93–117, 2020. DOI: https://doi.org/10.1007/s00778-019-00588-3

W. Ma, T. Zhou, J. Qin, X. Xiang, Y. Tan, and Z. Cai, “Adaptive multi-feature fusion via cross-entropy normalization for effective image retrieval,” Information Processing & Management, vol. 60, no. 1, p. 103119, 2023. DOI: https://doi.org/10.1016/j.ipm.2022.103119

A. N. Khalifa, H. R. Ali, S. A. Jebur, and S. A. Jahefer, “Automate facial paralysis detection using vgg architectures,” International Journal of Current Innovations in Advanced Research, pp. 1–8, 2024. DOI: https://doi.org/10.47957/ijciar.v7i1.158

R. Shaaque, A. Mehmood, G. S. Choi, R. Shafique, and S. Ullah, “Cardiovascular Disease Prediction System Using Extra Trees Classiier Cardiovascular Disease Prediction System Using Extra Trees Classifier,” 2019, [Online]. Available: https://europepmc.org/article/ppr/ppr135668%0Ahttps://doi.org/10.21203/rs.2.14454/v1 DOI: https://doi.org/10.21203/rs.2.14454/v1

M. S. Al-Batah, M. Alzyoud, R. Alazaidah, M. Toubat, H. Alzoubi, and A. Olaiyat, “Early Prediction of Cervical Cancer Using Machine Learning Techniques,” Jordanian Journal of Computers and Information Technology, vol. 8, no. 4, 2022. DOI: https://doi.org/10.5455/jjcit.71-1661691447

R. Aggarwal, P. Podder, and A. Khamparia, “ECG Classification and Analysis for Heart Disease Prediction Using XAI-Driven Machine Learning Algorithms,” in Intelligent Systems Reference Library, vol. 222, Springer Science and Business Media Deutschland GmbH, 2022, pp. 91–103. doi: 10.1007/978-981-19-1476-8_7. DOI: https://doi.org/10.1007/978-981-19-1476-8_7

M. M. Ali, B. K. Paul, K. Ahmed, F. M. Bui, J. M. W. Quinn, and M. A. Moni, “Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison,” Computers in Biology and Medicine, vol. 136, no. July, p. 104672, 2021, doi: 10.1016/j.compbiomed.2021.104672. DOI: https://doi.org/10.1016/j.compbiomed.2021.104672

S. A. Jebur, K. A. Hussein, H. K. Hoomod, and L. Alzubaidi, “Novel deep feature fusion framework for multi-scenario violence detection,” Computers, vol. 12, no. 9, p. 175, 2023. DOI: https://doi.org/10.3390/computers12090175



How to Cite

Khalifa, A. N. (2024). Optimization heart disease prediction using independent component analysis and support vector machine. International Journal of Current Innovations in Advanced Research, 7(1), 14–22. https://doi.org/10.47957/ijciar.v7i1.168



Original Articles